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SUMMARY
In this paper, a novel robust model reference adaptive impedance control (RMRAIC) scheme is
presented for an active transtibial ankle prosthesis. The controller makes the closed loop dynamics
of the prosthesis similar to a reference impedance model and provides asymptotic tracking of the
response trajectory of this impedance model. The interactions between human and prosthesis are
taken into account by designing a second-order reference impedance model. The proposed controller
is robust against parametric uncertainties in the nonlinear dynamic model of the prosthesis. Also,
the controller has robustness against bounded uncertainties due to unavailable ground reaction forces
and unmeasurable feedbacks of accelerations at the socket place. Moreover, an appropriate Series
Elastic Actuator (SEA) mechanism for the prosthetic ankle is included in this work and its effects are
discussed. Tracking performance and stability of the closed-loop system are proven via the Lyapunov
stability analysis. Using simulations on an overall amputee prosthetic foot system, the effectiveness
of the proposed RMRAIC controller is investigated for the task of level ground walking.

KEYWORDS: Ankle prosthesis; Physical human–robot interaction; Impedance control; Model
reference adaptive control; Robust control.

1. Introduction
Lower-limb amputees usually experience reduced mobility and considerable disabilities compared
with their non-amputee counterparts. Although passive prostheses are of interest to many researchers
in this field,1, 2 amputees using these passive prostheses usually experience reduced walking
performance including non-symmetric gait patterns and increased metabolic energy consumption.3–5

As a remedy to these shortcomings, powered ankle-foot prostheses have been designed and studied
in recent years to improve the quality of life for amputees.6–10 These active prostheses have been
developed to replicate biomechanical characteristics of a human ankle and reduce the metabolic
energy consumption during ambulation.

By evaluating available transtibial prostheses, the current challenge is to develop efficient
and smart controllers because the mechanical systems in many cases have been satisfactorily
designed.7, 11, 12 Au et al.6, 12 developed an active powered ankle prosthesis with one degree of free-
dom (DOF) in the sagittal plane. Bellman et al.7 designed an active robotic ankle prosthesis with two
actuated DOF in the sagittal and coronal planes. In ref. [13], a high-performance ankle prosthetic
emulator system was developed that had a suitable performance in human locomotion experiments.
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The main concern in designing every control scheme for a transtibial prosthesis is the capability of
replicating the normal human ankle functionality. Normal human ankle characteristics (i.e., stiffness,
damping, etc.) change during each gait cycle and also at different walking speeds.14, 15 Thus, in
order to replicate the behavior of a non-amputee human ankle, the prosthesis should be capable of
controlling the joint impedance and position required in each task.

The idea of powered ankle-foot prosthesis was brought to light in the late 1990s.16 Since then,
the control of powered ankle-foot prostheses has been an interesting topic in the field of biomedical
engineering. Au et al.17 have used the finite state control scheme to control a powered ankle-foot
prosthesis. They used SEA in the design of prosthesis to include elasticity in the mechanism.18, 19

Holgate et al.20 used phase plane control in order to control a 2-DOF transtibial ankle prosthesis.
Their designed prosthesis had 1 DOF in the sagittal plane and 1 DOF in the coronal plane,7 and each
DOF was actuated with a robotic tendon.21

Recently, Yuan et al.22 employed finite state control scheme for a 2-DOF ankle-and-toe mechanism
designed for transtibial amputees.23 A SEA mechanism has been used in their design,19, 24 which has
2 DOF, one at the ankle joint and the other at the toe.23

In most of the previous studies performed on the design and control of powered transtibial pros-
theses, researchers have used the SEA18, 19 or robotic tendon21 in their design of mechanisms, to
replicate the functions of able-bodied human ankle tendons and muscles. Both the SEA and robotic
tendon comprised of a DC motor in series with a spring structure through a mechanical transmission.
These mechanisms are intended to benefit from their inherent elasticity in order to reduce both peak
power and energy requirements for the actuators,21 and absorb the shock forces due to heel strike
(HS) of the prosthesis with the ground.6 In fact, one of the most hindering difficulties that arise in
the control of an ankle prosthesis is the presence of these shock and impact forces at HS.6

It is necessary for the controller of a prosthesis to be flexible with respect to interaction forces of
heel strike. Accordingly, the main reason for employing the SEA is to provide this flexible perfor-
mance. However, in addition to utilizing a SEA-based mechanism, the effects of these impact forces
should also be considered in the controller design. Impedance control is a suitable approach to realize
a flexible human–robot interaction.25 The impedance control theory has been utilized and justified
by many researchers for most of the rehabilitation robots/devices.6, 8, 26

Although the mentioned control schemes17, 20, 22 have shown appropriate performance, there has
been no stability analysis attributed to these controller designs. In fact, most of the developed con-
trol laws that exist in the literature have used PD-like control structures. The main reason that the
researchers are interested in these types of controllers is the minor sensory information required
for the implementation of such control schemes. In other words, the ankle angle, angular veloc-
ity, and ground reaction forces (GRFs) are usually the only required sensory information for such
schemes.17, 20, 22 In contrast, to propose stable control laws based on the prosthetic model, additional
sensory information (such as amputee–prosthesis interaction [API] forces and moment and/or accel-
erations at the amputated place) is usually required to implement such schemes. This is the main
reason that simple PD-like control methods were suggested and used instead of stable nonlinear
control schemes.

Some of the abovementioned issues have been considered and resolved in ref. [27], where an
artificial neural network-based controller has been proposed in order to adaptively compensate for
unmodeled dynamics and disturbances of the system and provide closed-loop stability.27 However,
they have neglected to include the impedance characteristics of walking in the design of the con-
trol system,27 and no flexible mechanism has been included in their design. In another work, Azimi
et al.28 have designed a robust model reference adaptive impedance control (RMRAIC) scheme for
an active knee prosthesis. In that work, the control scheme was designed for the knee joint and the
amputated place simultaneously. Accordingly, full feedback of state variables is required to imple-
ment the control law.28 Though the design in ref. [28] is promising, a shortcoming of the developed
controller is the isolation of control scheme and the reference impedance model. Based on the above
discussion, the main contributions of this research work can be summarized as follows:

• A new RMRAIC scheme is presented using a combination of robust control, impedance control,
and model reference adaptive control (MRAC).

• In this design, accelerations, GRFs, position, and velocity of the amputated place are not required
to be measured and used in the control law.
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Fig. 1. Illustration of the employed ankle prosthesis model: (a) the coordinate system, kinematic variables, and
positive angular directions, and (b) the geometrical and inertial parameters.

• The robustness of this controller is proved against parametric uncertainties, unknown accelera-
tions, and GRFs using the Lyapunov method.

• The controller employs the parameters of a stable reference impedance model in its structure and
makes the closed-loop dynamics of the prosthesis similar to the reference impedance model. Thus,
the controller and the impedance model are not separated in the proposed strategy.

• A Series Elastic Actuator (SEA) is utilized in the design of prosthetic mechanism to reduce the
effect of shock forces.

The stability of closed-loop system is proven using the Lyapunov stability analysis. Finally,
the implementation of the proposed controller is evaluated using some simulations on an overall
amputee–prosthetic foot system for the task of level ground walking.

The rest of this paper is organized as follows. In Section 2, the dynamic equations of the ankle
prosthesis are formulated. Section 3 is devoted to designing a suitable RMRAIC law for the prosthetic
system. In Section 4, the results of numerical simulations are presented to show the effectiveness of
the proposed control algorithm. Conclusion is drawn in Section 5. Note that throughout this paper
boldfaced and non-italicized letters are used for the vectors and matrices, while non-boldfaced and
italicized letters are adopted for the scalars.

2. Dynamics of the Prosthetic Ankle Joint

2.1. Prosthetic dynamic modeling
Figure 1 shows the link segment representation of the ankle prosthesis in the sagittal plane where
most of the ankle joint movements occur during a gait cycle. The dynamics of the prosthesis is
derived using the Euler–Lagrange method, which is formulated as:

D(q) q̈ + C(q, q̇) q̇ + Gg(q) + Ge(q) = τ + JTFe (1)

where q = [x y θ ϕ]T represents the position vector of the prosthetic ankle model; D(q) ∈R
4×4

is the mass matrix; C(q, q̇) q̇ comprises the Coriolis and centrifugal term, where C(q, q̇) ∈R
4×4;

Gg(q) ∈R
4 and Ge(q) ∈R

4 are the vectors of generalized forces associated with the gravitational
forces, and the added elasticity of mechanism in dorsiflexion portion of the gait where the spring
with tuned constant stiffness K r

p bears the weight of human body,6 respectively. τ ∈R
4 represents a

vector whose first three elements are the interaction forces and moment between the prosthesis and
the amputee, and the last element is the control input torque τankle, given by:

τ = [Fx Fy τz τankle]T (2)

Also JTFe ∈R
4 in Eq. (1) denotes the vector of generalized torques generated by the GRFs shown

in Fig. 2. In Fig. 1, l1 is the length of amputated shank, H is the total foot height, l2 is the distance
from heel to the projection of foot center of mass on the foot bottom, and l3 is the distance from
the projection of foot center of mass on the foot bottom to the toe. As an inertial parameter, lcom

s
represents the location of the amputated shank center of mass from amputation place (AP). ms and
Is denote the mass and rotational inertia of the amputated shank, respectively. Moreover, lcom

f is
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Fig. 2. Ground reaction forces measured at three different places beneath the prosthetic foot.
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Fig. 3. The mechanism of ankle prosthesis.

the location of foot center of mass from the ankle joint (A1). m f and I f also denote the mass and
rotational inertia of the foot, respectively.

The matrices in Eq. (1) have the following properties:

Property 1. The inertia matrix D(q) is symmetric and positive definite.29–31

Property 2. The matrix C(q, q̇) can be derived in such a way that Ḋ(q, q̇)−2C(q, q̇) is skew
symmetric.29, 30, 32

Property 3. For the arbitrarily selected signals v1 ∈R
4 and ∈R

4, the left-hand side of Eq. (1) can
be linearly parameterized in terms of the prosthetic model’s unknown parameters as follows [29]:

D(q) v1 + C(q, q̇) v + Gg(q) = Y(q, q̇, v1, v)θa (3)

where θa ∈R
p contains the unknown parameters of the prosthesis. Also the regressor matrix Y ∈

R
4×p contains known functions corresponding to the prosthetic dynamics.
Property 3 is useful in real situations, where the exact values of the inertial parameters lcom

s , ms , Is ,
lcom

f , m f , and I f are not known and only nominal values of these parameters are available. Moreover,
it is a reasonable assumption that these unknown parameters have constant values.

2.2. Mechanism of the ankle prosthesis
Figure 3 shows the mechanism of the ankle prosthesis, which is a SEA similar to the standard SEA
model adopted in ref. [18]. In this mechanism, the spring with constant stiffness K r

p is included to
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bear the weight of the human body during dorsiflexion phase of the gait cycle and to prevent damages
to the prosthetic motor and transmission.6 The function of this SEA mechanism is as follows: the
motor’s rotational motion is transferred to the bevel gear through the gear box and bevel pinion. The
rotational motion of the bevel gear is converted to the linear motion of the slider in the cylinder
via the prismatic joint. Compression of the extension/flexion spring KE/KF in the cylinder, which
is permanently attached to the prosthetic foot, produces a clockwise/counterclockwise torque that
causes ankle plantarflexion/dorsiflexion. Since the prosthetic ankle must be capable of providing
high torque bandwidth and power output,6 highly efficient electric motor should be chosen for the
mechanism. As a result of this characteristic, the fast dynamics of the electric motor can be neglected
and the following relation is obtained:

Tm = TL

ηN
(4)

where Tm is the motor torque, N is the total transmission ratio of gear box and bevel pinion and gear,
η is the total efficiency of motor and its toque transmission, and TL is the output torque of bevel gear.
θL is the rotation of bevel gear given by:

θL = θm

N
(5)

where θm is the rotation of electric motor axis.
Due to the definitions of τankle and θL , and the series springs in the mechanism, the relation between

motor torque Tm and τankle can be written as:

Tm = 1

ηN

(
τankle + Ksr

2tan (θL − ϕ)
)

(6)

where

Ks =
{

KF , θL ≥ ϕ

KE , θL < ϕ
(7)

The second term in the right-hand side of Eq. (6) can be defined as:

TSSE = 1

ηN
Ksr

2tan (θL − ϕ) (8)

where TSSE denotes the series spring effect torque. In addition, when there exists no series spring in
the mechanism, the bevel gear output torque TL is equal to τ ankle and therefore the required torque
by the motor in the absence of any series elasticity can be expressed as follows:

T NSE
m = 1

ηN
τ ankle (9)

where T NSE
m stands for the motor torque in the case of no series elasticity. Equations (8) and (9)

together with Eq. (6) imply that:

Tm = T NSE
m + TSSE (10)

which highlights the effect of the series springs in the mechanism.

3. Control

3.1. Dynamics of the reference impedance model
As mentioned in the introduction, one difficulty that arises in controlling an ankle prosthesis is the
presence of shock forces at the heel strike. In fact, the main reason for including the series springs
KE and KF in the mechanism (shown in Fig. 3) is to handle these impact forces. However, besides
accounting for the heel strike forces in the mechanism structure, the effects of these impact forces
should also be considered in the controller design. In fact, it is not enough for the controller of the
prosthesis to follow a predefined initially designed trajectory for the ankle. For instance, assume the
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situation where the ankle prosthesis just struck the ground at the heel of ankle prosthesis in the begin-
ning of gait cycle. From Fig. 2 it is clear that the resultant of the impact forces at the heel (F x

l1
and F y

l1
)

produces a clockwise moment about the ankle that tends to intensely plantarflex it. This tendency for
sudden and intense plantarflexion can weaken the performance of the prosthetic controller that is
designed to smoothly adjust the angle of prosthesis and inhibit sudden plantarflexion. This preven-
tion demands large control actions and, besides the possibility of damage to the prosthetic motor and
transmission, could cause unpleasant shock forces transfer to the human body. The remedy to this
problem is designing a controller to follow a reference model trajectory obtained from a reference
impedance model dynamics, whose inputs are the initially designed trajectory for the ankle and the
prosthesis–ground interaction moment. The idea of impedance control is to regulate both position
and force by specifying a dynamic relationship between them,25, 33 which is appropriate for the con-
trol problems associated with human–robot interactions.34–41 The reference impedance model chosen
in this work is a second-order dynamics given by:

Id (ϕ̈m − ϕ̈d) + Cd (ϕ̇m − ϕ̇d) + Kd (ϕm − ϕd) = τ ext
a (11)

where Id , Cd , and Kd are the desired inertia, damping, and stiffness of the reference model,
respectively. ϕd , ϕ̇d , and ϕ̈d are the initially designed trajectory, desired velocity, and the desired
acceleration of ankle prosthesis, respectively. Also, ϕm , ϕ̇m, and ϕ̈m are the reference model posi-
tion, velocity, and acceleration trajectories, respectively. τ ext

a is the interaction moment between the
prosthesis and the ground caused by the GRFs (shown in Fig. 2).

Using positive constant values for Id , Cd , and Kd , the impedance model becomes stable and has
two poles on the left half-plane as: {

p1 = −λ
′ + iλ

′′′

p2 = −λ
′′ − iλ

′′′ (12)

where the parameters are such that:

λ
′
> 0

λ
′′
> 0

λ
′′′ ≥ 0

(13)

The impedance parameters Id , Cd , and Kd are related to the impedance pole parameters λ
′
, λ

′′
, and

λ
′′′

as follows:

d2

dt2
+ Id

−1(Cd
d

dt
+ Kd) = (

d

dt
+ λ

′ − iλ
′′′
)(

d

dt
+ λ

′′ + iλ
′′′
) (14)

in which d/dt is the differentiation operator.
Performance of the impedance model dynamics (11) is such that, in harmony with the value and

sign of τ ext
a , the reference trajectory ϕm is smoothly diverged from the initially designed trajectory

ϕd ; and when τ ext
a becomes zero, the reference model trajectory converges to the initially designed

trajectory.

Remark 1. It is possible to choose a first-order reference impedance dynamics as:

Cd (ϕ̇m − ϕ̇d) + Kd (ϕm − ϕd) = τ ext
a (15)

where the model is stable for arbitrarily selected time-varying positive damping and stiffness param-
eters. Compared with Eq. (11), time-varying parameters are accepted in Eq. (15), but there exist two
major problems with this first-order dynamics. The first problem is that the model (Eq. 15) neglects
the inertial effects of the prosthesis and therefore it is not physical. The second problem is related to
the second-order nature of Euler–Lagrange equations (robot dynamics) that is not compatible with
the first-order impedance dynamics (Eq. 15) to include the required impedance parameters in the
designed controller as considered in this paper.

After introducing the reference impedance model, the control scheme for precisely tracking the
reference impedance model trajectory ϕm will be presented.
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3.2. Control algorithm
In this section, an RMRAIC scheme is presented. Note that a considerable difference between most
of the robotic systems and the ankle prosthesis is the existence of physical interactions between
amputee and environment. This is the main reason for employing an impedance-based controller in
the present work. Before introducing the control law, the following assumption on system dynamics
is expressed.

Assumption 1. It is reasonable to assume that the amputee intrinsically tends to control the
dynamics of shank, that is, the dynamics of x, y, and θ is controlled naturally by the amputee (sim-
ilar to an able-bodied human); however, the prosthetic controller should provide the stability and
appropriately control the impedance characteristic and angular position of the ankle joint.

With the above assumption, it is only required to control the dynamics governing the ankle angle ϕ.
The control signal is designed as follows:

τ = D̂(q) v1 + Ĉ(q, q̇) v + Ĝg(q) + Ge(q) + uR (16)

in which uR ∈R
4 is the robust term of the control law given by:

uR=−γ̂ sgn(s) − k1s/(‖s‖2+k2) (17)

where k1 and k2 are constant positive scalars, and ̂ denotes the estimation of matrices, vectors, and
scalars. In the control law (Eq. 16), the variables v1 and v are defined as:

v1 =

⎧⎪⎨
⎪⎩

0
0
0
ϕ̈d

⎫⎪⎬
⎪⎭ −Id

−1

⎛
⎜⎝

⎧⎪⎨
⎪⎩

0
0
0

Cd (ϕ̇ − ϕ̇d)

⎫⎪⎬
⎪⎭ +

⎧⎪⎨
⎪⎩

0
0
0

Kd (ϕ − ϕd)

⎫⎪⎬
⎪⎭ −

⎧⎪⎨
⎪⎩

0
0
0

τ ext
a

⎫⎪⎬
⎪⎭

⎞
⎟⎠ +

⎧⎪⎪⎨
⎪⎪⎩

0
0
0

(λ
′′′
)

2
(ϕ − ϕm)

⎫⎪⎪⎬
⎪⎪⎭

v =

⎧⎪⎨
⎪⎩

ẋ
ẏ
θ̇

ϕ̇m

⎫⎪⎬
⎪⎭ −

⎧⎪⎨
⎪⎩

0
0
0

λ
′
(ϕ − ϕm)

⎫⎪⎬
⎪⎭ (18)

where s ∈R
4 is the distance from sliding surface, which is given by:

s = q̇−v =

⎧⎪⎨
⎪⎩

0
0
0

ϕ̇ − ϕ̇m + λ
′
(ϕ − ϕm)

⎫⎪⎬
⎪⎭ (19)

The term sgn(s) in Eq. (17) is a vector whose elements are sign functions of the s vector’s elements.
Using Property 3, the control signal τ (presented through Eqs. 16–19) can be expressed as:

τ = Y(q, q̇, v1, v) θ̂a + Ge(q) + uR (20)

where Yθ̂a is the linear parameterization of the first three terms of the right side of Eq. (16). As
mentioned before, Y is the regressor matrix and θ̂a is the estimation of unknown system parameters.
The adaptive update law for estimation of unknown parameters is also defined as follows:

˙̂θ= −�YT(q, q̇, v1, v) s (21)

where � ∈R
p×p is a constant symmetric and positive definite matrix. The upper bound of system

uncertainties is estimated according to the following update law for the robust gain γ̂ of the control
law (Eq. 16):

˙̂γ = ‖s‖ (22)

Finally, τankle (given in Eq. 2) is obtained as follows:

τankle = [ 0 0 0 1] τ (23)
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Fig. 4. The structure of the developed RMRAIC method.

Structure of the proposed controller is illustrated in Fig. 4. Regarding the developed control
scheme, the only sensory information required to implement the controller is θ , ϕ, θ̇ , ϕ̇, θL , and
τ ext

a measured from the prosthesis itself. Note that other signals x , y, ẋ , and ẏ are not required as they
do not appear in the matrices and vectors of the controller (Eq. 16). Besides, it can be checked29 that
for the system being studied in this work, the first two columns of the matrix Ĉ(q, q̇) are identically
zero, which automatically eliminates the need for measurement of ẋ and ẏ that appear in the signal
v (Eq. 18).

3.3. Closed-loop dynamics and stability proof
The closed-loop dynamics and stability of the prosthetic system using the proposed controller are
provided in Appendix A.

Remark 2. The designed controller is also robust against the bounded unmodeled dynamics and
external disturbances, due to employing the robust control law (Eq. 17).

Remark 3. As shown in the proof, besides being capable of following the reference model tra-
jectory, the designed RMRAIC controller provides the impedance characteristics of the reference
impedance model (Eq. 11) for the closed-loop system as an inherent property.

4. Simulation Studies
In this section, performance of the developed RMRAIC scheme is evaluated using an overall amputee
prosthetic foot system for the task of level ground walking.

4.1. Amputee model
As shown in Fig. 5, an amputee prosthetic model is simulated in the sagittal plane. In Fig. 5(a), the
variables ϕ1 to ϕ6 describe the kinematic configuration of the amputee model, where ϕ1 is an absolute
angle and the other angles are assumed to be relative angles. Also, τ2 to τ6 are joint torques acting at
relative angles ϕ2 to ϕ6, respectively. The torque τ1, which acts on the global angle ϕ1, is a stabilizing
moment to inhibit instability of dynamic walking motion.42 Although from the bipedalism point of
view the amputee model should possess one degree of under-actuation, from a biomechanical point
of view, the torque τ1 is considered as the net muscle activity existing between pelvis and trunk that
inhibits instability of the amputee model. Besides, the planned trajectory for bipedal robots43 is far
away to be considered as a human-like trajectory, while the amputee model should be capable of gen-
erating human-like motions required by the task. The values of geometrical and inertial parameters
of the amputee model (Fig. 5b) are reported in Tables I and II, respectively.

In order to simulate a level ground walking gait, the trajectories of ankle, knee, and hip are
required. These trajectories are obtained from the gait experiments on human subjects.44 After
extracting 20-term Fourier series of position trajectories of the hip, knee, and ankle, the velocity and
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Table I. Geometrical parameters of the
amputee model.44

Parameter Value

L1 0.41 m
L2 0.18 m
L3 0.24 m
L4 0.10 m
L5 0.10 m
L6 0.18 m
L7 0.24 m
L8 0.19 m
L9 0.24 m

Table II. Inertial parameters of the amputee model.44

Parameter Definition Value

mT Trunk mass 50.85 kg
mt Thigh mass 7.50 kg
mAmp

s Shank mass (amputated side) 1.74 kg
mSs Shank mass (sound side) 3.49 kg
mf Foot mass 1.09 kg
IT Trunk inertia 4.98 kg.m2

It Thigh inertia 0.14 kg.m2

I Amp
s Shank inertia (amputated side) 0.007 kg. m2

ISs Shank inertia (sound side) 0.06 kg. m2

If Foot inertia 0.008 kg. m2

Fig. 5. Amputee model: (a) the coordinate system, kinematic variables, and positive angular directions, and (b)
the geometrical and inertial parameters.

acceleration trajectories are obtained using an analytical differentiation of the corresponding Fourier
series (a typical walking gait with 3 s of duration is assumed). The desired position trajectory for the
trunk angle (ϕ1d ) is obtained from a 20-term Fourier series of a human subject’s experimental data.
Also, the model and corresponding parameters of GRFs are provided in Appendix B and Table III,
respectively.

After deriving the Euler–Lagrange equations of the amputee model, the ideal computed torque29

is used to control the model of amputee, while the proposed controller is employed to control ankle
prosthesis simultaneously.

Before presenting the simulation results, it should be noted that the “sgn” function in the control
law (Eq. 17) could cause undesirable chattering in the input torque signal. Accordingly, this function
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Table III. Prosthesis–ground contact
model parameters.

Parameter Value

KG 5(105) N
m

Cmax 4(104) N.s
m

h 1 mm
h1 0.1
μs 0.8
μd 0.2
εμ 5 s

m

Table IV. Geometrical and inertial parameters
of the prosthetic system.44

Parameter Value

l1 0.24 m
H 0.07 m
l2 0.07 m
l3 0.14 m
lcom
s 0.15 m

lcom
f 0.02 m

ms 1.74 kg
Is 0.007 kg.m2

mf 1.09 kg
If 0.008 kg.m2

Table V. Other parameter values of the prosthetic
ankle mechanism used in simulations.

Parameter Value

K r
p 0.8(103) N

m
Rp 0.111 m
r 0.055 m
KE 6(105) N

m

KF 3(105) N
m

N 100
η 0.95

is usually replaced by approximate continuous alternatives such as saturation or tangent hyperbolic
functions. In this work, the function sat (s/0.05) is used instead of the discontinuous function sgn(s)
to smooth the control law in a narrow boundary layer around the sliding surface s = 0.

4.2. Simulation results
Performance of the proposed controller is evaluated using some simulation studies on an amputee
prosthetic foot system in MATLAB-Simulink software. The geometrical and inertial parameters of
the prosthetic system (shown in Fig. 1) are given in Table IV. Also, other parameter values of the
prosthetic ankle mechanism (illustrated in Fig. 3) are reported in Table V.

The desired impedance parameters used in Eq. (11) for the appropriate physical interaction
between the amputee and the ground are chosen as: Id = 20 kg.m2, Cd = 120 kg.m2

s , and Kd =
196.2 kg.m2

s2 . The parameters specifying the desired poles of the reference impedance model (Eq. 11)
are obtained based on Eq. (14). Accordingly, these pole parameters are determined as follows:
λ

′ = 3, λ
′′ = 3, λ

′′′ = 0.9. In addition to the pole placement analysis, the stiffness parameter Kd has
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Fig. 6. Estimation of uncertain system parameters during four gait cycles using the adaptation law (21).

been chosen by a trial-and-error method such that the tracking performance of the desired ankle tra-
jectory becomes appropriate with an error <0.02 rad (as seen in Figs. 8 and 14). Moreover, too small
or too large values of impedance (i.e., stiffness) parameter will negatively affect the performance
of the ankle prosthesis by providing too soft or too hard haptic sense of interaction for the human
operator during walking.

In this work, a prespecified walking velocity (a typical gait with 3 s of duration) is considered
in simulations; however, some initial adjustment trials should be performed and analyzed to choose
appropriate impedance parameters in any other motion status and/or velocity. For instance, in higher
walking velocities, faster response is required to be generated by the impedance model (Eq. 11).
Thus, the adjustment of poles and impedance parameters in this model should be revised in higher
walking velocities.

The coefficient matrix � in the adaptation law (Eq. 21) is chosen as � = 50I, where I ∈R
10×10 is

the identity matrix. The initial states of the ankle are selected equal to the corresponding states at the
HS of prosthesis with the ground, and the simulation is initiated from this gait position. The initial
guess of unknown system’s parameter vector θa is selected to have 10% error with respect to its real
value. The initial value of the estimation of the uncertainties’ upper bound γ is considered to be zero,
that is, γ̂ (t = 0) = 0.

The overall amputee prosthetic dynamic system is simulated during four complete gait cycles.
The reason for simulating for more than one gait was to let the amputee model reach a steady-state
response. Figure 6 shows the estimation of uncertain system parameters, where the parameterized
vector θa ∈R

10 is expressed as follows:

θa =
⎡
⎣mf lcom

s lcom
f , mf

(
lcom
f

)2
, ms

(
lcom
s

)2
, mslcom

s ,

mf lcom
s , mf lcom

f , ms, mf , If , Is

⎤
⎦

T

(24)

As seen in Fig. 6, the estimations have remained bounded during the entire time of gait cycles.
Figure 7 demonstrates the estimation of the upper bound of system’s uncertainties during four gait
cycles. Note that these estimations are made constant inside a chosen narrow boundary layer around
the sliding surface s = 0, as described by Slotine and Coetsee in ref. [45].

The differences between the impedance model position trajectory and the desired position trajec-
tory, and the tracking error in one gait cycle are illustrated in Fig. 8. Note that the tracking error is
significantly small and acceptable, although the control law is smoothened inside a narrow bound-
ary layer around the sliding surface s = 0 to avoid chattering. The plot of translational and angular
positions of the amputated place is given in Fig. 9. Also, the plot of ϕ − ϕ̇ during four complete gait
cycles is given in Fig. 10. As seen, the position trajectory converged to a limit cycle.
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Fig. 8. (a) Difference between the reference model response and the initially designed trajectory, and (b) the
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The control signal τankle for one gait cycle is shown in Fig. 11. As observed in this figure, there
exists a jump in τankle during a gait cycle. This jump is due to the HS of prosthesis with the ground
at the beginning of each gait cycle as discussed previously. Finally, the motor torque Tm and the
torques T NSE

m and T SSE (illustrating the effects of the mechanism’s spring) are presented in Fig. 12. It
should be mentioned that the computation of TSSE requires angle θL . Since θL was not available in the
computation, an assumption was utilized that the interaction moment between ground and prosthesis
about the ankle joint is approximately equal to the moment produced by the compression springs of
SEA mechanism about the ankle joint at each instance of the stance phase. Using this assumption,
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an approximation for θL is obtained. Figure 12 shows how prosperous is the SEA mechanism in
reducing the impact at the heel strike (which is better seen in Fig. 11). In Fig. 12, Tm stands for the
motor torque when the SEA mechanism is used, and T NSE

m is the corresponding torque in the absence
of any series spring. Figure 12 also shows how the effect of series spring torque (T SSE) has reduced
the required torque by the motor from T NSE

m to Tm , and prevented HS impact and shock loads.
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Fig. 13. Comparison between input torque τankle and torque produced using the previous control method
developed in ref. [28].

To better investigate the performance of the developed control scheme, a comparison with a
recently developed control method28 for an active prosthesis is carried out in this section. Assuming
similar parameters and gains, the control law in ref. [28] is expressed as follows:

τ = Y(q, q̇, vA, v̇A) θ̂a + Ge(q) − JTFe − 	A
Dsat(sA/diag(ϕA)) (25)

where e, vA, sA are given as ⎧⎨
⎩

e = q − qm
sA = ė + λAe

vA = q̇m − λAe
(26)

Moreover, the estimation of parameters is updated based on the dynamics:

˙̂θa = −	A YT(q, q̇, v, v̇) s
 (27)

where s
 is given by:

s
 = sA − ϕAsat(sA/diag(ϕA)) (28)

The control parameters 	A
D = 20, ϕA = 0.1, λA = 3, 	A= 0.01 are used in the simulation. Also, the

position and velocity trajectories qm and q̇m can be obtained from the reference impedance dynamics:

IA (q̈m − q̈d) + CA (q̇m − q̇d) + KA (qm − qd) = JTFe (29)

where the impedance parameters are IA = 20, CA = 120, KA = 196.2. The previous control method28

defined in Eqs. (25–29) is similar to the controller (Eq. 16) developed in this paper except for two
distinctions. As the first one, the previous controller28 was designed for the ankle joint and the ampu-
tated place simultaneously. Therefore, the feedback of x, y, ẋ, ẏ is required to implement the control
law in ref. [28], which is difficult to be measured and unnecessary for the control as discussed in
Section 3.2. The second distinction of the previous controller28 in comparison with the proposed
RMRAIC strategy is the isolation of the control law and the reference impedance model (Eq. 29),
which results in a lack of inclusion of impedance parameters in the control scheme as provided in
this paper. Note that, though the feedback of GRFs is required to implement in the control law,28 it
is not a shortcoming of this controller since the estimation of GRFs is currently under investigation
by the same researchers.46 Figure 13 shows a comparison of ankle torques obtained by the proposed
and previous control strategies during one gait cycle. As seen, the responses are coincident except for
the late stance phase, which is due to a lack of impedance inclusion in the control law developed in
ref. [28]. The differences between the reference model response trajectory and the initially designed
trajectory, and comparison of the tracking errors during four complete gait cycles are given for the
proposed and previous control strategies in Fig. 14. Two time-series in Fig. 14(a) are coincident for
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Fig. 14. Comparison of responses obtained from the proposed and previous28 control strategies: (a) differences
between the reference model response and the initially designed trajectory, and (b) tracking errors during four
complete gait cycles.
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Fig. 15. Input torque τankle during four gait cycles of walking on a surface specified with Y = 0.04 sin(2X).
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walking on an uneven surface specified with Y = 0.04 sin(2X).

both controllers, which was expected due to the same reference impedance dynamics. Figure 14(b)
shows that the tracking error of the previous method28 is better than the one obtained by the method
developed in this paper. This can be justified since the effects of GRFs are included in ref. [28],
while this is not the case for the currently proposed method. In fact, the GRFs are assumed not to be
measureable in this paper; and due to the absence of their effects in the control design, the tracking
performance is worse than the one obtained in ref. [28].
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To better show the effectiveness of the proposed strategy, the performance of this control scheme
in an uneven ground is investigated. Figure 15 shows the control input during walking on a ground
surface specified with the relation:

Y= 0.04 sin(2X) (30)

The desired, impedance, and ankle trajectories for this task are provided in Fig. 16, and the
performance of the control scheme is justified.

5. Conclusion
An asymptotically stable RMRAIC scheme was presented in this work for active ankle prostheses.
The controller was designed to track the output trajectory of a second-order impedance dynam-
ics whose inputs are the initially designed trajectory for the ankle joint and the prosthesis–ground
interaction moment. It was analytically proven and also shown via numerical simulations that the
controller was robust against parametric uncertainties and disturbances. The SEA mechanism was
employed in the design of prosthetic structure. The results showed the prosperity of the proposed
prosthetic mechanism in filtering the shock forces exerted to the system (e.g., due to HS) and also
the success of the designed mechanism in reducing the required torque generated by the motor. It
should be highlighted that more experimental evaluations of the proposed control strategy for active
prostheses will be conducted in future works. Moreover, the proposed control strategy can be used
for other tasks and/or other prosthetic systems.
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Appendix A: Closed-loop dynamics and stability proof
The proposed control objective is that the developed RMRAIC method makes the closed-loop
dynamics of the ankle prosthesis similar to the reference impedance model (Eq. 11), and the ankle
trajectory asymptotically tracks the response of Eq. (11).

The closed-loop dynamics of the system using the proposed RMRAIC controller should be
obtained for stability analysis. For this purpose, the control law (Eq. 16) is substituted into the system
dynamics (Eq. 1):

D(q) q̈ + C(q, q̇) q̇ + Gg(q) = D̂(q) v1 + Ĉ(q, q̇) v + Ĝg(q) + uR + JTFe (A1)

Subtracting D(q) v1 + C(q, q̇) v + Gg(q) from both sides of Eq. (A1) results in:

D(q) (q̈ − v1) + C(q, q̇) (q̇ − v) = D̃(q) v1 + C̃(q, q̇) v + G̃g(q) + uR + JTFe (A2)

where D̃(q), C̃(q, q̇) and G̃g(q) are the estimation errors of the dynamic matrices D(q), C(q, q̇) and
Gg(q), respectively, defined as:

D̃(q) = D̂(q) − D(q)

C̃(q, q̇) = Ĉ(q, q̇) − C(q, q̇)

G̃g(q) = Ĝg(q) − Gg(q)

As a consequence of Property 3 in Section 2.1, one can write:

D̃(q) v1 + C̃(q, q̇) v + G̃g(q) = Y(q, q̇, v1, v) (θ̂a − θa) (A3)

Therefore, Eq. (A2) is simplified to:

D(q) (q̈ − v1)+C(q, q̇) (q̇ − v) = Y(q, q̇, v1, v) θ̃a + uR + JTFe (A4)

in which θ̃a is the parameter estimation error vector defined as

θ̃a= θ̂a − θa (A5)

The vector q̈ − v1 appearing in Eq. (A4) can be written as

q̈ − v1 = v2 − vp
2 (A6)

where the auxiliary signal v2 ∈R
4 is obtained as follows:

v2 =

⎧⎪⎪⎨
⎪⎪⎩

0
0
0

ϕ̈ − ϕ̈d + Id
−1

(
Cd (ϕ̇ − ϕ̇d) + Kd (ϕ − ϕd) − τ ext

a

) − (λ
′′′
)

2
(ϕ − ϕm)

⎫⎪⎪⎬
⎪⎪⎭ (A7)

Also, vp
2 ∈R

4 in Eq. (A6) is a bounded perturbation-like term given by:

vp
2 =

⎧⎪⎨
⎪⎩

−ẍ
−ÿ
−θ̈

0

⎫⎪⎬
⎪⎭ (A8)

Using Eq. (A6) and according to Eq. (19) (q̇−v = s), Eq. (A4) can be simplified to:

D(q) v2 + C(q, q̇) s = Y(q, q̇, v1, v) θ̃a + uR + JTFe + D(q) vp
2 (A9)

The reference impedance model dynamics (Eq. 11) can be written in a vector notation as

v3 = 0 (A10)
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where v3 ∈R
4 is an auxiliary signal expressed as

v3 =

⎧⎪⎨
⎪⎩

0
0
0

ϕ̈m − ϕ̈d + Id
−1

(
Cd (ϕ̇m − ϕ̇d) + Kd (ϕm − ϕd) − τ ext

a

)
⎫⎪⎬
⎪⎭ (A11)

Based on Property 1, the matrix D is positive definite and invertible. Invertibility of D implies that
the only solution to the following equation:

D(q) v3 = 0 (A12)

is the trivial solution given by Eq. (A10). Therefore, Eqs. (A10) and (A12) are equivalent and can be
used interchangeably. Subtracting D(q) v3 from the left-hand side of Eq. (A9) leads to:

D(q) v4 + C(q, q̇) s = Y(q, q̇, v1, v) θ̃a + uR + JTFe + D(q) vp
2 (A13)

where the signal v4 ∈R
4 is obtained as:

v4 = v2 − v3 =

⎧⎪⎪⎨
⎪⎪⎩

0
0
0

ϕ̈ − ϕ̈m + Id
−1

(
Cd

(
ϕ̇ − ϕ̇m

) + Kd (ϕ − ϕm)
) − (λ

′′′
)

2
(ϕ − ϕm)

⎫⎪⎪⎬
⎪⎪⎭ (A14)

By applying both sides of the operator relation (Eq. 14) to the signal ϕ − ϕm and employing Eq. (19),
it can be concluded after some mathematical manipulations that:

v4 = ṡ + λ
′′
s (A15)

Therefore, the closed-loop error dynamics (Eq. A13) can be simplified as

D(q) (ṡ + λ
′′
s) +C(q, q̇) s = Y(q, q̇, v1, v) θ̃a + uR + JTFe + D(q) vp

2 (A16)

Equation (A16) expresses the closed-loop dynamics of controlled prosthesis. Before presenting the
Lyapunov stability analysis, the last two terms on the right-hand side of Eq. (A16) are discussed.
Since the elements of D and J matrices only comprised sine and cosine functions of θ, ϕ, and the
signals vp

2 (given in Eq. A8) and Fe consisted of bounded elements, the following inequality can be
presented: ∥∥JTFe + D(q) vp

2

∥∥ ≤ γ (A17)

where γ is assumed to be an unknown and constant positive scalar and ‖·‖ is used for the Euclidean
norm of vectors. To prove system stability and the asymptotic tracking performance, the following
Lyapunov function candidate is employed:

V
(
s, θ̃a, γ̃

) = 1

2
sTD(q) s + 1

2
θ̃

T
a �−1θ̃a + 1

2
γ̃ 2 (A18)

where γ̃ is the estimation error of γ (γ̃ = γ̂ − γ ). Using the closed-loop dynamics (Eq. A16), and
noticing that the vector of unknown parameters θa and the upper bound γ have constant values, the
time derivative of V can be expressed as:

V̇ = sT(−λ
′′
D(q) s − C(q, q̇) s + Y(q, q̇, v1, v) θ̃a + uR + JTFe + D(q) vp

2)

+ 1

2
sTḊ(q) s + θ̃

T
a �−1 ˙̂θa + γ̃ ˙̂γ (A19)

Substituting the update law (Eq. 21) for the estimated parameters θ̂a, and arranging and simplifying
the terms in Eq. (A19), we get:

V̇ = −λ
′′
sTD(q) s + sTuR + sT(JTFe + D(q) vp

2)+
1

2
sT (Ḋ(q) − 2C(q, q̇) )s + γ̃ ˙̂γ (A20)
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Due to Property 2, and since the quadratic term associated with a skew symmetric matrix (Ḋ−2C) is
identically zero, the time derivative of Lyapunov function is simplified to:

V̇ = −λ
′′
sTD(q) s + sTuR + sT(JTFe + D(q) vp

2)+ γ̃ ˙̂γ (A21)

Based on Eq. (A17), the following inequality can be written:

sT(JTFe + D(q) vp
2) ≤ ‖s‖ ∥∥JTFe + D(q) vp

2

∥∥ ≤ ‖s‖ γ (A22)

In addition, using Eq. (17) the term sTuR in Eq. (A21) can be expressed as

sTuR = −γ̂ ( |s1| + |s2| + |s3| + |s4| )−k1‖s‖2/(‖s‖2+k2) ≤ −γ̂ ( |s1| + |s2| + |s3| + |s4| ) ≤ −γ̂ ‖s‖
(A23)

where si is the ith component of s. Employing the update law (Eq. 22) for the robust gain γ̂ and based
on inequalities (Eqs. A22 and A23), Eq. (A21) can be expressed with some simplifications as

V̇ ≤ −λ
′′
sTD(q) s (A24)

Therefore, all signals appearing in the Lyapunov function remain bounded and consequently s ∈ l∞.
By integrating both sides of Eq. (A24), one can obtain:

λ
′′
λD

∫ ∞

0
(s2

1 + s2
2 + s2

3 + s2
4) dt ≤ V (0) − V (∞) (A25)

where λD > 0 is the infimum of the minimum eigenvalue of D(q). Based on Eq. (A25), it is concluded
that s ∈ l2 and this together with s ∈ l∞ implies that s ∈ l2 ∩ l∞. Based on Property 1 and due to the
boundedness of signals in the closed-loop dynamics (Eq. A16), ṡ ∈ l∞. Since s ∈ l2 ∩ l∞ and ṡ ∈ l∞;
therefore, limt→∞ s = 0 (using the Barbalat lemma).47 Since the first three components of s in Eq.
(18) are zero,

d

dt
(ϕ − ϕm) + λ

′
(ϕ − ϕm) = s4 (A26)

is the only nonzero component of s. In fact, Eq. (A26) is a first-order differential equation whose
input s4 is such that limt→∞ s4 = 0. As long as λ

′
> 0, limt→∞ ϕ − ϕm = 0 [29], and this completes

the proof.

Appendix B: The model of ground reaction forces
The model of GRFs is adopted from [42, 48] with minor corrections in equations and parameters.
Especially, the employed functions have been considerably smoothed to avoid chattering and/or
model discontinuity issues. For GRF modeling, three places with equal distances are selected beneath
the sound foot and ankle prosthesis (as shown in Fig. 2). Then, assuming that the ith place has the
position of (xi , yi ) with respect to the global reference frame, the normal and horizontal components
of the contact forces are assumed as follows:

FN = (−KG yi − CG (yi ) ẏi ) 1 (−yi )

FH = −μ(ẋi )FN sat (10ẋi ) (B1)

in which the employed functions are given by

CG (yi ) =
⎧⎨
⎩

Cmax yi < −h
Cmax

∣∣ 3
h2 yi

2 − 2
h3 |yi

3|∣∣ −h ≤ yi ≤ 0
0 yi > 0

1 (yi ) =

⎧⎪⎨
⎪⎩

0 yi < 0

yi
4−2

(
1

h1
3 + h1

)
yi

3 +
(

3
h1

2 + h1
2
)

yi
2 0 ≤ yi ≤ h1

1 yi > h1

μ (ẋi ) = (μd − μs) tanh
(
εμ ẋi

) + μs (B2)

and “sat” in Eq. (B1) is the saturation function.29 Also, the ground is assumed to be flat (Y = 0).
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